What diseases do vaccinations prevent

what diseases do vaccinations prevent

Vaccines and the diseases they prevent

14 rows Vaccines and the diseases they prevent Find out more about the most commonly . Apr 06, Vaccines are one of the greatest advancements in the history of public health. Vaccines are responsible for eliminating smallpox and reducing by 95 percent or more many of the common childhood diseases like diphtheria, measles and polio, which once killed hundreds of thousands. Even now, there are million peoplemostly children in the developing worldwho die from vaccine .

Diseases that used to be common in this country and around the world, how to make something radio controlled polio, measles, diphtheria, pertussis whooping coughrubella German measlesmumps, tetanus, rotavirus and Haemophilus influenzae type b Hib can now be prevented prevnt vaccination.

Thanks to a vaccine, one of the most terrible diseases in vccinations smallpox no longer exists outside the laboratory. Over the years vaccines have prevented countless cases of disease and saved millions of lives. Children are born with an immune system composed of cells, glands, organs, and fluids located throughout the body. The first time a child is infected with a specific antigen say measles virusthe immune system produces antibodies designed to fight it.

This takes time. If it ever enters the body again, even after many years, the immune system can produce antibodies fast enough to diweases it from causing disease a second time. This protection is called immunity. It would be nice if there were a way to give children immunity to a disease without their having to get sick first. Vaccines contain the same antigens or parts of antigens that cause diseases.

For example, measles vaccine contains measles virus. However, they are strong enough to make the immune system produce antibodies that lead to immunity. The child gets protection without having to get sick. Through vaccination, children can develop immunity without suffering from the actual diseases that vaccines prevent. Top of Page. Skip directly to site content Skip directly to page options Skip directly to A-Z link.

Section Navigation. Facebook Twitter LinkedIn Syndicate. Minus Related Pages. Why Immunize? Links with this icon indicate that you are leaving the CDC website. Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors what time is 20 27 the information and products presented on the website. You will be subject to the destination website's privacy policy when you follow the link.

CDC is not responsible for Section compliance accessibility on other federal or private website. Cancel Continue.

Main navigation

Below is a list of diseases that vaccines can protect against: Cholera. Diphtheria. Haemophilus influenzae type b (Hib) Hepatitis A. Hepatitis B. Human papillomavirus. Influenza. Measles. Nov 22, Because of the increased risk of disease exposure in these instances, these 9 non-routine vaccines are available, listed below by disease. These are considered non-routine vaccines because they are not part of the recommended immunization schedules for children, adolescents and adults. Adenovirus. Anthrax. Cholera. The Immune SystemThe Bodys Defense Against Infection. Macrophages media icon. are white blood cells that swallow up and digest germs, plus dead or dying cells. The macrophages leave behind parts of the B-lymphocytes are defensive white blood cells. They produce antibodies that attack the.

Printer friendly version pdf icon [2 pages]. To understand how vaccines work, it helps to first look at how the body fights illness. When germs, such as bacteria or viruses, invade the body, they attack and multiply. This invasion, called an infection, is what causes illness. The immune system uses several tools to fight infection. Blood contains red blood cells, for carrying oxygen to tissues and organs, and white or immune cells, for fighting infection. These white cells consist primarily of macrophages, B-lymphocytes and T-lymphocytes:.

Vaccines prevent diseases that can be dangerous, or even deadly. This fact sheet explains how the body fights infection and how vaccines work to protect people by producing immunity. The first time the body encounters a germ, it can take several days to make and use all the germ-fighting tools needed to get over the infection.

After the infection, the immune system remembers what it learned about how to protect the body against that disease. The body keeps a few T-lymphocytes, called memory cells, that go into action quickly if the body encounters the same germ again.

When the familiar antigens are detected, B-lymphocytes produce antibodies to attack them. Vaccines help develop immunity by imitating an infection.

This type of infection, however, almost never causes illness, but it does cause the immune system to produce T-lymphocytes and antibodies. Sometimes, after getting a vaccine, the imitation infection can cause minor symptoms, such as fever. Such minor symptoms are normal and should be expected as the body builds immunity. However, it typically takes a few weeks for the body to produce T-lymphocytes and B-lymphocytes after vaccination. Therefore, it is possible that a person infected with a disease just before or just after vaccination could develop symptoms and get a disease, because the vaccine has not had enough time to provide protection.

Scientists take many approaches to developing vaccines. These approaches are based on information about the infections caused by viruses or bacteria the vaccine will prevent, such as how germs infect cells and how the immune system responds to it.

Practical considerations, such as regions of the world where the vaccine would be used, are also important because the strain of a virus and environmental conditions, such as temperature and risk of exposure, may be different across the globe. The vaccine delivery options available may also differ geographically. Today there are five main types of vaccines that infants and young children commonly receive in the U.

There are four reasons that babiesand even teens or adultswho receive a vaccine for the first time may need more than one dose:. Some people believe that naturally acquired immunityimmunity from having the disease itselfis better than the immunity provided by vaccines.

However, natural infections can cause severe complications and be deadly. This is true even for diseases that many people consider mild, like chickenpox. It is impossible to predict who will get serious infections that may lead to hospitalization. Vaccines, like any medication, can cause side effects. The most common side effects are mild. However, many vaccine-preventable disease symptoms can be serious, or even deadly. Although many of these diseases are rare in this country, they do circulate around the world and can be brought into the U.

Even with advances in health care, the diseases that vaccines prevent can still be very serious and vaccination is the best way to prevent them. Skip directly to site content Skip directly to page options Skip directly to A-Z link. Provider Resources for Vaccine Conversations with Parents.

Section Navigation. Facebook Twitter LinkedIn Syndicate. Understanding How Vaccines Work. Minus Related Pages. On This Page. Macrophages media icon are white blood cells that swallow up and digest germs, plus dead or dying cells. The macrophages leave behind parts of the invading germs called antigens. The body identifies antigens as dangerous and stimulates antibodies to attack them. B-lymphocytes are defensive white blood cells.

They produce antibodies that attack the antigens left behind by the macrophages. T-lymphocytes are another type of defensive white blood cell. They attack cells in the body that have already been infected.

How Vaccines Work Vaccines help develop immunity by imitating an infection. Types of Vaccines Scientists take many approaches to developing vaccines. These vaccines contain a version of the living virus or bacteria that has been weakened so that it does not cause serious disease in people with healthy immune systems. Because live, attenuated vaccines are the closest thing to a natural infection, they are good teachers for the immune system.

Examples of live, attenuated vaccines include measles, mumps, and rubella vaccine MMR and varicella chickenpox vaccine. Even though they are very effective, not everyone can receive these vaccines. Children with weakened immune systemsfor example, those who are undergoing chemotherapycannot get live vaccines.

Inactivated vaccines also fight viruses and bacteria. These vaccines are made by inactivating, or killing, the germ during the process of making the vaccine. The inactivated polio vaccine is an example of this type of vaccine. Inactivated vaccines produce immune responses in different ways than live, attenuated vaccines. Toxoid vaccines prevent diseases caused by bacteria that produce toxins poisons in the body. In the process of making these vaccines, the toxins are weakened so they cannot cause illness.

Weakened toxins are called toxoids. When the immune system receives a vaccine containing a toxoid, it learns how to fight off the natural toxin. The DTaP vaccine contains diphtheria and tetanus toxoids. Subunit vaccines include only parts of the virus or bacteria, or subunits, instead of the entire germ. Because these vaccines contain only the essential antigens and not all the other molecules that make up the germ, side effects are less common. The pertussis whooping cough component of the DTaP vaccine is an example of a subunit vaccine.

Conjugate vaccines fight a different type of bacteria. These bacteria have antigens with an outer coating of sugar-like substances called polysaccharides. Conjugate vaccines are effective for these types of bacteria because they connect or conjugate the polysaccharides to antigens that the immune system responds to very well.

This linkage helps the immature immune system react to the coating and develop an immune response. An example of this type of vaccine is the Haemophilus influenzae type B Hib vaccine.

Vaccines Require More Than One Dose There are four reasons that babiesand even teens or adultswho receive a vaccine for the first time may need more than one dose: For some vaccines primarily inactivated vaccines , the first dose does not provide as much immunity as possible.

So, more than one dose is needed to build more complete immunity. The vaccine that protects against the bacteria Hib, which causes meningitis, is a good example. For some vaccines, after a while, immunity begins to wear off. This booster dose usually occurs several years after the initial series of vaccine doses is given. For example, in the case of the DTaP vaccine, which protects against diphtheria, tetanus and pertussis, the initial series of four shots that children receive as part of their infant immunizations helps build immunity.

But a booster dose is needed at 4 years through 6 years old. Another booster against these diseases is needed at 11 years or 12 years of age. This booster for older childrenand teens and adults, toois called Tdap. For some vaccines primarily live vaccines , studies have shown that more than one dose is needed for everyone to develop the best immune response.

For example, after one dose of the MMR vaccine, some people may not develop enough antibodies to fight off infection. The second dose helps make sure that almost everyone is protected. Finally, in the case of flu vaccines, adults and children 6 months and older need to get a dose every year.

Children 6 months through 8 years old who have never gotten a flu vaccine in the past or have only gotten one dose in past years need two doses the first year they are vaccinated. Then, an annual flu vaccine is needed because the flu viruses causing disease may be different from season to season.

Every year, flu vaccines are made to protect against the viruses that research suggests will be most common. Also, the immunity a child gets from a flu vaccination wears off over time.

The Bottom Line Some people believe that naturally acquired immunityimmunity from having the disease itselfis better than the immunity provided by vaccines.

Top of Page. Related Links. Links with this icon indicate that you are leaving the CDC website. Linking to a non-federal website does not constitute an endorsement by CDC or any of its employees of the sponsors or the information and products presented on the website. You will be subject to the destination website's privacy policy when you follow the link. CDC is not responsible for Section compliance accessibility on other federal or private website. Cancel Continue.

1 thoughts on “What diseases do vaccinations prevent

Add a comment

Your email will not be published. Required fields are marked *